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Abstract: The CONtinuous-Time System IDentification (CONTSID) toolbox provides
Matlab functions for estimating continuous-time black-box models of dynamical systems from
measured data without having to fully characterize the mathematics governing the system
behavior. The toolbox includes tools for standard identification of linear continuous-time
models such as simple process, transfer functions and state-space models. The toolbox also
provides algorithms for more advanced identification such as errors-in-variable (EIV) and
closed-loop model estimation or to capture nonlinear system dynamics. This paper presents an
overview of the main features of the latest release of the CONTSID toolbox and outlines some
recent developments for on-line parameter and time-delay system estimation.
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1. INTRODUCTION

The CONTSID toolbox to be run with Matlab was
the first toolbox entirely dedicated to continuous-time
(CT) model identification from sampled data. It was first
released in 1999 (Garnier and Mensler, 1999) at a time
where discrete-time model identification was the classical
approach. Fortunately, things have recently changed
and continuous-time model identification has now taken
over discrete-time model identification as exemplified
by the more pronounced role of continuous-time model
in the System identification toolbox (Ljung and Singh,
2012). One of the clear reasons is coming from the
fact that control scientists and engineers have a better
understanding and every-day practice of continuous time
models, while they are less familiar with input/output
polynomial black-box models such as discrete-time ARX,
ARMAX or Box-Jenkins models.

The CONTSID toolbox has been updated on a regular
basic since its first release, mainly at IFAC SYSID
Symposia (see e.g. Padilla et al. (2015) and references
herein). To facilitate its use, it has been designed to be
an add-on to the Matlab System Identification toolbox
(Ljung et al., 2018). It exploits the same syntax, data and
model objects.

The toolbox provides standard parametric estimation
techniques such as subspace and prediction-error
minimization (Garnier and Wang, 2008). However,
in the CONTSID toolbox, there is a special focus towards
instrumental variable (IV)-based estimation methods

(Garnier, 2015). The identification process is preferably
executed in the command-line even though there is also
an app that lets the user analyse the experimental data,
identify and evaluate linear models in an easy way.
The toolbox includes many demonstration program to
illustrate its use and, last but not least, it can be freely
downloaded from:
www.cran.univ-lorraine.fr/contsid/

The CONTSID toolbox includes tools for basic identifica-
tion of linear black-box continuous-time models such as:

• Identification of simple (low-order) process models;
• Identification of transfer function models;
• Identification of input/output black-box polynomial

models such as autoregressive (CARX), output-error
(COE) and Box-Jenkins (CBJ) models;

• Identification of state-space models with free or
canonical parametrizations;

• Identification from time-domain response data;
• Identification from frequency-domain response data.

The CONTSID toolbox also includes tools for more ad-
vanced identification such as:

• Identification from irregularly sampled data;
• Identification of errors-in-variables (EIV) models;
• Closed-loop model identification;
• Identification of nonlinear block-oriented (Hammer-

stein and Hammerstein-Wiener) models;
• Identification of linear parameter varying (LPV) in-

put/output models;
• On-line identification for tracking time-varying sys-

tem dynamics.



The latest release of the CONTSID toolbox includes the
following new developments:

• It supports new routines for estimating transfer func-
tion plus time-delay models;
• It supports new on-line estimation methods for track-

ing time-varying parameter (TVP) models;
• For educational purposes, the demonstration pro-

grams have been entirely revisited. The toolbox in-
cludes several new built-in-tutorials that illustrate
typical identification sessions with the CONTSID
toolbox.

The paper is organized in the following way. An overview
of the different forms of CT models along with standard
and advanced methods available in the toolbox is first
presented in Section 2. The recommended sequence for
identifying linear models with the CONTSID toolbox
is then presented and illustrated on experimental data
coming from a flexible robot arm in Section 3. The latest
developments for the demonstration programs along with
for on-line and time-delay model estimation are described
in Sections 4 to 6.

2. OVERVIEW OF THE MAIN CONTSID TOOLBOX
COMMANDS

2.1 The system identification workflow

In practice, the common system identification workflow is
iterative as shown in Figure 1 (Ljung, 1999). It includes
several tasks. Starting from measured input/output data,
a set of candidate models is estimated by using suitable
identification algorithms. The identified model which pro-
duces the best results according to the chosen validation
criterion is finally selected. The system identification work-
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Fig. 1. The system identification procedure

flow is general and pragmatic. It is independent of the cho-
sen discrete-time or continuous-time model parametriza-

tion used, although the latter can present many advantages
(see e.g. Garnier and Young (2014); Garnier (2015)).

2.2 Main CONTSID toolbox commands

The latest version 7.3 of the CONTSID toolbox offers
a variety of parametric model estimation methods for
common linear and nonlinear model structures. Tables 1
and 2 summarize the main CONTSID toolbox commands
for standard linear model identification and for more
advanced identification respectively.

Table 1. Main CONTSID toolbox commands
for standard linear model identification

Model type Estimation commands

Transfer function models tfsrivc

Process models procsrivc

Input/output polynomial models lssvf (CARX models)

ivsvf (CARX models)

coe (COE models)

srivc (COE models)

rivc (CBJ models)

State-space models sidgpmf

ssivgpmf

Table 2. Main CONTSID toolbox commands
for more advanced identification

Model Type Estimation commands

Polynomial models clsrivc

in closed loop cl2srivc

EIV models focils

Hammerstein models hsrivc

Hammerstein-Wiener models hwsrivc

LPV input/output models lpvsrivc

3. TUTORIAL INTRODUCTION TO THE CONTSID

As seen before, system identification is an iterative pro-
cess, where you identify models with different structures
from data and compare model performance. You start by
estimating the parameters of simple model structures. If
the model performance is poor, you gradually increase the
complexity of the model structure. Ultimately, you choose
the simplest model that best describes the dynamics of
your system. Another reason to start with simple model
structures is that higher-order models are not always more
accurate. Increasing model complexity increases the uncer-
tainties in parameter estimates and typically requires more
data (which is common in the case of nonlinear models).

3.1 Recommended model identification sequence

The recommended sequence for identifying parametric
models with the CONTSID toolbox commands is the
following:

(1) Start by trying the simplest linear model structures
such as transfer function, simple process and COE
polynomial, models. Use the tfsrivc, procsrivc and
srivc commands, respectively. Use the srivcstruc
command to select the appropriate model order.
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Fig. 2. Input/output data over the 3rd-period for the robot
arm

(2) Try continuous-time BJ polynomial models which
provide additional flexibility to model the noise con-
tribution. Try several model orders and keep the
model orders as low as possible. Use the rivc com-
mand.

(3) Try LPV, Hammerstein or Hammerstein-Wiener
models which provide additional flexibility to model
nonlinear effects. It is more complicated to select the
polynomial orders used to capture the nonlinearities.
Use the lpvsrivc, hsrivc and hwsrivc commands.

3.2 Identification of a flexible robot arm

A short example will illustrate the typical steps involved
in identifying a linear model in the case of a flexible robot
arm. The full demonstration program can be run from the
demonstration program presented in Section 4.

The behavior of a flexible robot arm was measured by
applying controlled torque to the vertical axis at one end
of the arm, and measuring the tangential acceleration of
the other end. The robot arm is described in more detail
in Kollar (1994).

The excitation signal is a multi-sine. The sampling period
is set to 2 ms. Measurements are made with anti-aliasing
filters. K = 10 periods each of length M = 4096 are
exactly measured and a record of N = KM = 40, 960
data points is collected. The data set over the 3rd period
is displayed in Figure 2. The identification problem is to
use part of the data to identify an appropriate model
structure from the robot arm data set; to then estimate
the parameters that characterize this identified model
structure; and, finally to validate the identified model on
a section of the data not used for the estimation stage.

The empirical transfer function estimate (ETFE) obtained
from the 3rd period data set is displayed in Figure 3. From
this figure, one can have a good indication about the model
orders of the system. Indeed, one can see from the ETFE
that the system has at least 3 resonant modes and 4 zeros
in the frequency band ω ∈ [0; 350] rad/s.

Different model structures in the range [nb nf nk] =
[4 4 0] to [7 6 0] have been computed by using srivcstruc
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Fig. 3. Empirical transfer function estimate for the robot
arm
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Fig. 4. Cross-validation results on a short section of the
8th-period data set

command for the 3rd period data set. The other data set
periods were kept for model validation purposes.

The 7 best models sorted according to YIC (see e.g.
Garnier (2015)) are given in Table 3. From this table, the
first model with [nb nf nk]= [6 6 0] seems to be quite clear
cut (it has the most negative YIC=−9.19, with the highest
associated R2

T = 0.907).

Table 3. Best SRIVC model orders for the
robot arm data set

nb nf nk YIC R2
T

6 6 0 –9.19 0.907**

4 4 0 –8.56 0.940

7 6 0 –8.03 0.907

5 6 0 –7.41 0.906

5 4 0 –7.01 0.940

The process identification is performed with the srivc
algorithm on the third-period data set. The identification
result is given as the following Laplace transfer function
model

Ĝ(s) =
20.87(s − 618.5)(s2 − 1.698s + 710.6)(s2 + 8.435s + 2.012e4)

(s2 + 1.033s + 2094)(s2 + 0.9808s + 9905)(s2 + 2.693s + 7.042e4)



Fig. 5. Main window of the CONTSID demonstration
program.

Fig. 6. Sub-menu window to run demos showing some case
studies with the CONTSID toolbox.

Figure 4 compares the simulated SRIVC model output
with the measured output series, over a short section of
0.4 s for the 8th-period data set. It can be noticed that the
simulated output matches the measured data quite well,
with R2

T > 0.95. The estimated linear model is therefore
accurate enough here and there is no need to go through
steps 2 and 3 of the recommended identification sequence
described in Subsection 3.1.

4. NEW DEMONSTRATION PROGRAMS

Demonstration programs are crucial to illustrate the use
of new aspects of a toolbox. The demonstration programs
for the CONTSID toolbox have been entirely revisited for
educational purposes. The new demos can now be executed
by typing the following command: contsid demo
This opens a main menu window from which the user is
invited to select between four options as shown in Figure 5.
The four sub-menu windows from which built-in-tutorials
can be run, are displayed in Figure 6 to Figure 9.

5. LATEST DEVELOPMENTS FOR ON-LINE
IDENTIFICATION

5.1 Tracking time-varying parameters with the CONTSID
new algorithms

In the recent years, there has been a renewed inter-
est in recursive identification, mainly due to an in-
creased demand for fault detection, monitoring and pre-
dictive maintenance. On-line recursive estimation of linear
time-varying systems usually involves discrete-time mod-
els. Continuous-time models have received less attention,

Fig. 7. Sub-menu window to run demos illustrating stan-
dard linear model identification with the CONTSID
toolbox.

Fig. 8. Sub-menu window to run demos showing the
advantages of the CONTSID methods.

partly due to the increased complexity associated with the
need to handle the time-derivatives of the input and output
variables. Recent research have led to the development of
new recursive algorithms for on-line estimation of slowly
linear time-varying continuous-time models (Padilla et al.,
2016). Table 4 summarizes the recently developed algo-
rithms now available in the CONTSID toolbox.

Two adaptation mechanisms are available for each of the
algorithm (Padilla et al., 2016):

• Kalman filter where it is assumed that the variations
of the parameters are described by a stochastic ran-
dom walk model;

• Standard forgetting factor.

Table 4. New CONTSID toolbox commands
for on-line estimation

Model Type Estimation commands

Linear polynomial models rlssvf (CARX models)

rivsvf (CARX models)

rsrivc (COE models)



Fig. 9. Sub-menu window to run demos illustrating ad-
vanced system identification with the CONTSID tool-
box.

5.2 Numerical example for on-line estimation

The use of the new recursive RLSSVF and RSRIVC rou-
tines with the Kalman filter adaptation mechanism is illus-
trated here by a numerical example. The assumed random-
walk model presents the advantage of easily handle the
case of model parameters with different types of variations.
The data generating system is given by

S
{(
p2 + ao1(t)p+ ao2(t)

)
x(t) = bo0(t)u(t)

y(tk) = x(tk) + e(tk)
(1)

where p denotes the differentiation operator, ao1(t) varies
slowly between 5 and 45 in a linear fashion, bo0(t) remains
constant at 200 and ao2(t) varies slowly as follows,

ao2(t) = 160− 90 cos(2πt/1000)

Note that the parameter slow variations are different. a1(t)
varies slowly between 5 and 45 in a linear fashion, b0(t)
remains constant while a2(t) varies slowly in a sine fashion.

The sampling time is set to 0.01 s and the total simulation
time is 1000 s. The input is a PRBS and the DT mea-
surement noise is zero-mean, Gaussian noise with constant
variance 0.1. In this example, as a consequence of the time-
varying parameters, the DC gain is decreasing towards
half of the simulation time; and since the noise variance is
kept constant, the signal-to-noise ratio (SNR) is decreas-
ing around half of the simulation time. For some frozen
LTI systems obtained every 100 s, the magnitude Bode
diagram is plotted in Figure 10. From this figure, it can be
noted that not only the steady-state gain of the system is
varying but also the system bandwidth. The bandwidths
of these frozen systems are shown in Figure 11 where it
can be noted also that the ratio between the maximum
and minimum bandwidths is nearly 10, i.e. the bandwidth
variation is relatively large over the total simulation time.

The simple RLSSVF algorithm is first tested. This routine
assumes a CARX model structure and so the triad which
defines the number of parameters to be estimated for each
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Fig. 11. Bandwidth of frozen systems obtained every 100
s.

polynomial needs to be set in the appropriate way. Qnvr

is set as a diagonal matrix with diagonal elements equal
to 10−5, 10−4 and 10−10 corresponding to ao1, ao2 and bo0,
respectively.

nn=[2 1 0]; % [na nb nk]
Qn=diag([1e-5 1e-4 1e-10]);

The value corresponding to bo0 is 10−10, because it is
assumed known that this parameter is constant.

For the SVF, λsvf = 16 rad/s is chosen, i.e. a value larger
than the maximum bandwidth.

th1 = rlssvf(data,nn,’lambda_svf’,16,’...
adm’,’kf’,’adg’,Qn);

With these settings, the RLSSVF estimates are displayed
in Figure 12 for noise-free and noisy output measurement.
In the former case, since there is no noise, RLSSVF per-
forms very well and it is difficult to distinguish between the
true and estimated parameters. However, in the noisy case,
RLSSVF does not provide reasonable parameter estimates.
Note that the relative errors of the three estimates are
similar but this is difficult to see because the scales for
the y-axes are different. It can be observed from Figure 12
that the estimation error variance increases at the central
portion of the plot. This is because the SNR is decreasing
along with the time while the system bandwidth reduces
when the time increases (which would also require λsvf to
be lower).

To get a better tracking of the time-varying parameters
in the noisy situation, one can use the recursive version
of simplified refined instrumental variable method for
continuous-time model estimation (RSRIVC) as suggested
in Padilla et al. (2016). Notice that the routine assumes
an COE model, then nn and Qn must be redefined.

nn = [1 2 0]; % [nb nf nk]
Qn = diag([1e-10 1e-5 1e-4]);
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noisy case.

th2 = rsrivc(data,nn,’lambda_svf’,16,...
’adm’,’kf’,’adg’,Qn)

The RSRIVC estimates are displayed in Figure 13. The
improvement in the estimation performance is clear from
Figure 13, where the proposed adaptive RSRIVC algo-
rithm is able to track the parameter changes very well.
Naturally, the estimation error variance changes discussed
above for the RLSSVF case also occur here.

6. LATEST DEVELOPMENTS FOR TIME-DELAY
SYSTEM IDENTIFICATION

Time-delays are a common feature of many industrial
processes. Obtaining an accurate estimate of the time-
delay is of crucial importance for controller design, in order
to achieve good control system performance.

Recent developments have led to extend the simpli-
fied refined instrumental variable method for CT models
(SRIVC) to handle arbitrarily time-delayed systems (Chen
et al., 2018). The developed method, abbreviated as TFS-
RIVC (SRIVC for transfer function models) is based on the
principle of variable projection, combining an IV method
for the rational model parameters and an adaptive search
for the time-delay. The new TFSRIVC method has shown
to be effective in terms of numerical simulations (Chen
et al., 2018). New demos have been added to illustrate the
recent developments for transfer function plus time-delay
model identification with the CONTSID toolbox.

7. CONCLUSION

The CONTSID toolbox is dedicated to the direct iden-
tification of continuous-time models from sampled data.
The toolbox is in continual development. The new release
includes new demonstration programs ; it also supports
new routines for tracking time-varying parameters and for
identifying transfer function plus time-delay models. Fu-
ture developments are aiming at improving the graphical
user interface (app) to facilitate the use of the CONTSID
toolbox methods for those who are not familiar with the
Matlab commands.
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